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A technique for constructing the curves of dynamic compressibility of powder media from the results of an ex-
periment on a plant of hydraulic explosive pressing is suggested which makes it possible to construct a cer-
tain portion of the compressibility curve with the aid of one experimental shot for any powder material in the
pressure-density coordinates to the total exclusion of the apparatus that could register the dynamic parameters
of the process of pressing. The technique is used for predicting the results of pressing concrete articles from
powder materials, in particular, to determine the parameters of a charge and the coordinates of its disposi-
tion in a transmitting liquid medium to obtain a blank with prescribed properties.

We will consider the possibility of applying a hydraulic explosive pressing plant (HEPP) for methodological
purposes, that is, obtaining the curve of dynamic pressing of powder materials.

The mechanism of loading powder bodies in an HEPP (Fig. 1) is as follows: on explosion of a high explo-
sive, the energy spent to press powder is transferred from detonation products through a transmitting liquid medium,
and by means of subsequent motion of fluid flow (water).

Experiments have shown that the dynamics of the process of pressing has a distinct wave character. Indicative
of this are the substantially nonuniform distributions of the density and thickness along the circle of a hollow cylin-
drical blank after pressing an equally dense powder body by a linear high-explosive charge displaced relative to the
symmetry axis. Generally, the problem of determining the dynamic and technological parameters of pressing by such
a scheme of loading is complex even in its statement. This is due to the fact that one has to consider unsteady-state,
discontinuous, three-dimensional flows, whereas a powder is a rheologically very complex medium, for which there
has been no reliable model up to now; therefore in constructing an engineering technique of calculation we shall in-
troduce some substantial simplifications.

In order to describe the powder rheology, we will use the simplest hydrodynamic model of three-dimensional
compression in Tait’s form:
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For the transmitting medium (water), the equation of state, isentropic, and of the shock adiabat up to pressures of 3
GPa is taken in the form
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We perform calculation in a plane approximation and ignore the change in the parameters of the state of the
detonation product, transmitting medium, and powder over the height of the HEPP. We also consider that the secon-
dary compression of the powder by the shock wave which was reflected from the wall of the matrix (the casing of
the plant) is insignificant, i.e., we assume that the results of pressing are determined in the first approximation by the
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parameters of the primary shock wave which was refracted into the powder medium. We also neglect the influence of
the relief that follows the shock-wave compression.

Figure 2 presents a shock-wave picture of pressing in an intermediate time interval in the A–A section (see
Fig. 1). The points O and O1 are the centers of the powder body being compressed 6 and of the displaced linear high-
explosive charge 3 located on their symmetry axes; A is the point of refraction of a shock wave from transmitting liq-
uid medium 5 into the compressed powder body 6; C is the point of reflection of a shock wave from the inner cavity
of the plant, and B is the point of refraction of a shock wave from the pressed powder body 6 into the transmitting
liquid medium 5.

We shall fix a coordinate system on the moving point of the refraction of the shock wave A at the place of
its contact with the powder. The flow pattern in the vicinity of this point is depicted in Fig. 3. In solving the direct
problem we assume the law of powder compressibility to be known in the form of Eq. (1).

This part of the procedure serves only to construct a simpler scheme with the aid of which we determine the
law of powder compressibility. At an intermediate stage, it can be taken from the experimental results on determining
the static compressibility of the powder medium under investigation.

Fig. 1. Schematic diagram of a hydraulic explosive pressing: 1) detachable mi-
crotank; 2) electric detonator; 3) linear high-explosive charge; 4) casing of the
plant; 5) transmitting liquid medium; 6) powder; 7) elastic shell; 8) fixing ring.

Fig. 2. Wave pattern of pressing with asymmetrical disposition of a charge at
an intermediate time instant: 1) shock wave front in the liquid; 1I) front of the
shock wave refracted in the powder; 2) transmitting liquid medium–powder in-
terface; 2I) transmitting liquid medium–powder behind the refracted shock
wave 1I; 2II) transmitting liquid medium–powder interface behind the refracted
shock wave 4; 3) high-explosive charge; 4) shock wave refracted from the
plant casing–powder interface; 4I) reflected shock wave refracted into the
transmitting medium; 5) transmitting liquid medium; 6) powder.
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The distribution of the pressing parameters is eventually determined by the value of β and the pressure behind
the shock-wave front in water. For β the following dependence can be obtained:

β = arctan 
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The pressure behind the shock wave is calculated from the formula [1]
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where K and η are constants. For the values of D and flow velocity behind the shock wave in a laboratory coordinate
system we write

ρ01D = ρ1 (D − u) ,   p1 = ρ01Du ,   p1 = A 
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Fig. 3. Picture of the flow in the vicinity of point A: I) zone immediately fol-
lowing the shock wave in a transmitting medium; P–MF) zone of expansion
(Prandtl–Meyer flow); II) zone following the P–MF in a transmitting medium;
III) zone of a nonperturbed powder; IV) zone of the shock-compressed pow-
der; V) zone in front of a shock wave in a transmitting medium (a nonpertur-
bed medium); 1) incident shock wave in a transmitting medium; 1I) incident
shock wave in the powder; 2) powder-transmitting medium boundary behind
the refracted shock wave 1I.
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At an oblique shock wave the following relations are valid:

V01 = 
D

sin β
 ,   V0n = D = V01 sin β ,   V0τ = V1τ = D cot β , (7)

V1n = D − u = D cot β tan (β − θ1) , (8)

V1 = 
D cot β
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 . (9)

Equations (4)–(6) and (8) yield a relation for θ1:

θ1 = β − arctan 
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The foregoing equations entirely determine the parameters of the liquid flow behind shock wave 1 (Fig. 3).
Calculations have shown that the velocity V1 behind the shock wave is supersonic. Then in the angle which is deter-
mined by the characteristics emanating from the point A and by the corresponding velocities V1 and V2 there is the
Prandtl–Meyer mode of flow, i.e., the flow turns from the angle θ1 toward θ2 and is accelerated. A dependence which
couples the parameters of the flow before and after its turning is known [2]:

θ2 = θ1 − Φ (M1) + Φ (M2) , (11)

where Φ(M) = √n + 1
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/ A(n−1) ⁄ 2n is the local speed of sound; c00 is the speed of sound in a nonperturbed medium. Dependence (11) relates

the parameters θ2, p2, and V2 to the known parameters θ1, p1, and V1. At the boundary between the liquid and powder

the following condition is obvious:

p4 = p2 , (12)
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Further, at the front of shock wave 1 the following relations hold:

ρ03V3n = ρ4V4n ,   p4 = ρ03V3n
2

 − ρ4V4n
2

 ,

V3n = V01 sin γ ,   V4n = V01 cos γ tan (γ − θ2) ,   V4 = V01 
cos γ

cos (γ − θ2)
 . (14)

We use the Bernoulli equation in the form
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where c1 and c2 represent the speed of sound in zones I and II.
Using Eqs. (1)–(15), we can calculate the parameters that characterize the state of the transmitting medium

and powder in the process of pressing in the vicinity of the point A. Figures 4 and 5 present some of the results of
calculations by the equations suggested.

The smallness of the parameters θ1, θ2, and γ allows one to considerably simplify the calculation technique:
there are good grounds for assuming that the values of the parameters p4 and ρ4 will not differ from those obtained
if we assume that the pressing at each point is done by a straight shock wave and that the pressure is determined by
the distance r. In this case, one has to solve only one equation which determines the parameters at the water–powder
interface after incidence of a shock wave on it:
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where ρ002 is the water density at atmospheric pressure.
Curve 2 represented in Fig. 5 was calculated from Eq. (16). As is seen, the closeness of curves 2 and 3 quite

justifies the simplification introduced. Other parameters of interest to us are determined from the simplified formulas
with allowance for the smallness of θ1, θ2, and γ given in the present work:
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We shall consider the technique of determining the curve of dynamic compressibility from the results of
measurement of the pressing density obtained in the case of asymmetric disposition of a linear charge and the corre-

Fig. 4. The angles θ1 (1), θ2 (2), and γ (3) vs. the polar angle ε of the point
of contact of a shock wave with the initial surface of the powder medium.
θ1, θ2, and γ is in rad; ε is in deg.

Fig. 5. Curves of a change in the relative density (1) and pressure (2, 3) over
the perimeter of a pressed article (dots, experimental data): 2) calculation by
Eq. (16); 3) by Eqs. (1)–(15). p, in MPa; ε, in deg.
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sponding shock-wave loading of the powder medium. Let the experimental dependence 
ρ4exp

ρ03
 = ρ

__
4exp(ε), (ε = ε(r)) be

obtained. Then Eq. (16) written as
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Fig. 6. Dynamic compressibility of titanium powder vs. pressure: 1) p = 1.4
[(ρ ⁄ ρ0)4.5 − 1] (approximation of results obtained in the HEPP); 2) p = 1.1
[(ρ ⁄ ρ0)4.5 − 1] (approximation of the data of [3]). p, in MPa.

Fig. 7. Articles produced by the pulse method of pressing with account for the
curves of the dynamic compressibility of powder materials: a) porous titanium
filters; b) ceramic filtering elements and porous diaphragms for reactors of
chemical treatment of water in an "Izumrud" plant; c) refractory one- and two-
layer crucibles for melting and pouring ferrous and non-ferrous metals; d) two-
layer batch-beakers made from ZrO2 and Al2O3 for continuous casting machines.
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yields the computational dependence p2 = p4 = f(ρ
__

4exp). From the points obtained, we determine the values of the con-
stants B and m by using the least-squares method for processing and, as a result, we obtain
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Figure 6 presents the results of processing experimental data by Eq. (17) which is approximated by Eq. (18),
as well as the experimental data on determination of the shock adiabat of the powder under study that were taken
from [3].

The curves obtained by the technique considered cannot in full measure be considered a shock adiabat
(multiple loadings of the powder and the final relief in pressing are not taken into account), but they can success-
fully be applied to predict the results of dynamic compressibility of powders and moulding of various articles from
them (Fig. 7).

Thus, an engineering technique for constructing the curves of dynamic compressibility of various powder
media has been developed. Using it, on the basis of the data on a single cycle of experimental explosion of any con-
crete powder, a curve of dynamic compressibility is constructed in the pressure–density coordinates. Such dependences
are used for predicting the results of pressing and the properties of the articles to be produced from metal and ceramic
powders. The technique suggested is applicable to calculating both dynamic and technological parameters of pressing.

NOTATION

A and B, coefficients; a, distance between the symmetry axes of a powder blank and charge, m; D, velocity
of a shock wave in a transmitting medium, m/sec; m and n, exponents; p1, ρ1, p2, ρ2, and p4, ρ4, pressure and density
in regions I, II, and IV, MPa, kg/m3; p01, ρ01, V01 and p03, ρ03, V03, pressure, density, and velocity in regions V and
III, MPa, kg/m3 and m/sec; r and ε, polar coordinates of the point of refraction of a shock wave, m and deg; r0, ra-
dius of a cylindrical high-explosive charge, m; R, inner radius of a powder body, m; u, velocity of medium flow,
m/sec; V, flow velocity in a coupled coordinate system, m/sec; V1, V2, and V4, flow velocities in regions I, II, and IV,
m/sec; V1n, V3n, V4n, V0n and V1τ, V3τ, V4τ, and V0τ, normal and tangential flow velocity components in zones I, III,
IV, and V, m/sec; β, angle between the shock-wave front in a transmitting medium and the initial transmitting me-
dium–powder body interface at the point of refraction of a shock wave, rad; γ, angle between the shock-wave front in
a powder and the boundary of a powder body at the point of refraction of a shock wave, rad; θ1 and θ2, angles of
flow turning in transition through a shock wave into the transmitting medium in the powder, rad; ρ0 and ρ, initial and
current density, kg/m3; I, region between a shock wave in the transmitting medium and the Prandtl–Meyer flow zone;
II, region of flow between the Prandtl–Meyer zone and the boundary of a powder body behind a shock wave; III, re-
gion of an unloaded powder body; IV, region occupied by a compressed powder behind the shock wave; V, region in
front of a shock wave in a powder body. Subscripts: n, normal; τ, tangential; p, powder; exp, experimental.
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